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In gas dynunica one ia fre atly obliged to consider flows of a medium in a channel in a 
field of disturbing forcea $ and heat eonrcee Q. In there caws where the diatnrbing factors 
are relatively small, the eqaatfons can be lfnearlzed near the l olutfon for F = 0, Q - 0. In 
many practical applicationa .F and Q are inhomogeneous in the longitudinal and transverse 
directions over some l ef9nent of finfte length(*) (which we shall denote by L:), while up- 
straau from this eelgnent F = 0, Q I 0 and downstream from it F and Q depend practically 
only on the coordfnate8 in the transverse cross section (or are equal to zero in a particular 
ca8el. 

We shall show that in the linear formulation for subsonic flows in a flat channel aud cir 
culu pipe it in possible to find the flow parame.ters beyond the zone L (in the aegplent L’ 

At.9 separated from L by some distance 1, Fig. 1) without solving 
the corresponding linear system of partial differential eqna- 
tions. The flow in the segment L’is determined by F and Q 
in L ‘(which depend only on the transverse coordinates) and 

Fig. 1 

t by the integraln of these pantftfes over the segplent L. 

/ k dimendonleaa varlablea the eqnationa of gas dynamics 
for a perfect gas with constant heat capacities are 

p (vV)v = -VP + Nf, div pv = 0 

pvVe = - p div v + Nq, p= (T- l)PE (1) 

Here the density p, velocity V, pressure p, internal ener 
x, 
V 

y, z are referred to p*, V, pJ2, Ire , and A, respectively gTp 

e , and Cartesian coordinates 
l is the characteristic density 

the average velocity over the channel cross section, and h the characteristic transverse 
dimension); y is the ratio of specific heats; Nf and Nq are the dimensionless densities of 
forces and heat sources; N is a parameter characterizing the relative magnitude of the dis- 
turbing factors. 

Henceforth we assume that I and q depend explicitly on the flow parameters (but not on 
their derivatives) and on the coordinates. 

If N < 1, tbe solution of (1) can be sought in the form of series, 

p = ~0 + Np, + . ..t e = e. + Nel $.... 

P = PO + NP, +..., v = v. + NV, f . . . (2) 

where the quantities with the subscript 0 satisfy system (1) for N = 0. For flow in a channel 
with a constant cross section (along the axial coordinate x) and gas-impermeable walls we 
have 

*) In maguetohydrodynamics F and Q are the electromagnetic force and the Joule dissipa- 
tion, respectively. In many practically interesting c*ses the length of the zone L is com- 
parable to the height of the channel. 
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“0 = (%I (I+ 4, 0. Oh PO = PO (l/v 4, $80 = pm = const (3) 

Here uo and p. are ubitrary smooth nonvanflhing functfon~(‘?. 
The equatfonm of the first approximation for a flat chaunel 1x1 

pipe y < 1, 0 < 8 < 2n, IS1 < 00 are of the fortaP+) 
<o, 0 < y < 1 and drcular 

au1 
POUO.a, + PO u1 dy duo + 2 L= fx, PQuaa~+ $fv 

b au1 duo 
UOz +Po,,+vldy+ $$ (y’vd = 0 

aP1 apl dpo 
~O~-aO~UO,,-ao%~ =q” (q”=(r--l)q), Pouoa~=f, (4) 

In System (4) the qusntitiea q , ut, and wt are the projecdons of the perturbed velocity 
vector on the axe8 x, y, and x (or 8). respectively; v = 0 for a flat cbaunel and Y = 1 for a 
circular pipe; the functions p. and uo depend only on y; a,, ia the speed of mound computed 
from parametera (3). The disturbing factors f and q depend on the coordinates x, y and ou 
gae dynamic parameters (3); they are assumed to be known(***). The last Eq. in (4) doea 
not depend on the other equatfopa and determines the twist of the stream. 

We aksume that f and q are inhomogeneona with respect to z and y in the segment L; to 
the left of L (for x + - 00) F = 0, q = 0, while to the ri&t of it I and q depend only on y. 
Mathematically this asmuaption ceu be expressed by requiring convergence of the integral8 

0 

1 rldz, Wd=~(rl-qJd~ 

-cm 0 

and fulfillment of the approximate Eq. 

X 

s 
(TV- tl,) dx = h 

0 

for x lying to the ri 
cro15s section x 8$ 

t of L. (Here fl(x, y) is either of the fuuctions f, q; VW = qb, y); the 
= 0 elonga to the zone L). 

Let us condder the boundary conditions for system (4). We shall examine subsonic flowa 
(3). Theme will be unperturbed (by the factore f and q) if the conditiona at the channel exit 
upon “actuation” of the disturbing factors are adjusted in such a way that the conditiona at 
the entrance are not altered. In the general came by uo , p. , and poo we mem certain diatri- 
butiona of the gas dynamic parameter0 in the entrance croio section which come into being 
upon the actuation of the dinturbmtces f and q. 

In these cases the perturbadono of ut, pt , and p t are equal to zero as x + - 00. At the 
impermeable walla of the channel (for y = 1) we have v1 = 0. 

Let us analyxe system (4). Integrating the first, third, end fourth of its Eqe. over x in the 
range (- 00, x), we obtain three relations which enable us to expreea ut, p I, and p1 in terms 
of the integrals of w1 and&t/&. Then, differentiating the first and second Eqs. of system 
(4) over y and x, respectively, and tahing account of the resulting expression for u 1, we ob- 
tain one partial differential equation for the velocity ot, 

a = (Mea- I)_‘, (5) 

VI =o npu x--f -00, Vl = 0 npu y=o, :J= 1 

‘1 

‘9 
l **) 

The presence of dirrcondnaidea in the derivatives of ho, po would result in a dincon- 
tfnuoua profile of the perturbed velocity u t; the presence of points where ~qr,, = 0 
would result in an unlimited increase in ui (Formula (14)). The limitations imposed on 
the functiona uo aud po are dictated by the model of a nonviscous medium which we 
are u&g. 
In tbe case of a circular pipe y, 8, z are cylindrical coordinates. 
The fact that f and q depend only on x and y allowed us to assume that a/Jr = 0 (or 
d/d8 = 0) in deriving (4). 
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Here .4fu is the Mach number for unperturbed flow (3). For Mo < 1 Eq. (5) has an elliptic 
character. By hypothesis, the disturbing factors are axially homoge&eous to the right oft 
aud 

For an incompressible fluid we must set po m 1, & = - 1, oe = m in (5) and (6). 
Due to the elliptic character of Eq. {S), the perturbations occasioned by the axial inhomo- 

geneity of @ on L are damped out to the right of L over the length Ax of magnitude on the 
order of 1= (1 - Me2 )%, where M+ is the Mach number of unperturbed flow averaged over 
the cross section(*) (the dimensional dam ing length can be obtained by multiplying Ax by 
n). Hence, at a sufficient large distance R z from the right end of L ( Ahr >z I) the velocity 
ut practically ceases to depend on z(ur = *r+ (y)) and is given by Eq. (“*I 

d.‘vl+ dvl+ UI, d - - 
U~JIJ~~ F -t- dy y” dJ (Up".'/") - Vi+ F 

dS 
-=-.= dy 

v1+ (0) = 0, 

The solution of this Eq. is of the form 
II - 

Vl + F:$j(S-t-C)pdl, 
II 

1 1 

(8) 

According to this expression, ut +m 0 for S = const. This is possible, for example, for 
fx,=U, qmo==ti, or fx~,,= const, qom = const and a homogeneous unperturbed stream. In 
the case of an incompressible fluid S = fx, and the velocity uIt can differ from zero only 
with an inhomogeneous distribution of f,,,,. 

Let us determine the remaining flow parameters to the right of the zone L, i.e. in the 
!&one L ‘, where nr=: u+r. The flow in this zone will henceforth be called pseudodeveloped 
(***I; its parameters will be accompanied by the superscript +. 

( 
Let us integrate the first, third, and fourth Eqs. of system (4) over x within the limits 

- 00, JC), where x belongs to the pseudodeveloped flow zone. We obtain 

duo 
pow1+ + 1;1+ + -J-j- (9 -t ~POz’lS) = “f,, + 51 

aa2 dpo 
uol;1+ - a&4opr+ - - - po dy (9 t “povl+) = 4,” z + b 

(9) 

\p=1c,(y)== i povldx+~pG(vl-vl+)d~ (10) 

-co 0 

~I=~I(Y)-= j! f,dx :-~(IX-I_)d~. <r 7 C$ (!/) = f 

co 

’ q0 dx -+ 
s 

(q” - q,“) dx 

--M 0 -02 0 
Instead of the superscript OD the integrals of (10) should, strictly speaking, contain the 

pnst~tity X. But since x belongs to the pseudodeveloped flow zone, where vr, f, and q” 
practically coincide with Q+, j,r, and Q.,.,’ (i.e. in theory they reach these asymptotic values 

9 

**) 

***) 

A very rough and in most cases exaggerated estimate is used. An exact estimate can, 
of course, be obtsined after solving Eq. (S), We also note that numbers 4f+ close to un- 
ity are excluded from consider&on. As Mo + I the pertnrbation of the velocity ut in- 
cresses without knit and the linear theory no longer applies. 
TheoreticJly 2’r -+ 2.r+ (y) as x + m. However, the asymptotic form is determined by the 
exponential factor, and transition to the profile ur +( ) occurs at a finite distance from y 
L equal to 1 in order of magnitude. 
This term is used in monograph [I] to describe the flow of a nonviscous incompreasi- 
bIe flnid in a flat channel beyond the inhomogeneous magnetic field zone. 
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very quickly), replacement of the upper limits is quite permissible, and 5‘1, 62, and ti can 
be considered as functions of the single variable y. The quantities tt and 5, are assnmad 
known. 

From the second Eq. of system (4) we have 

(11) 

Here t3 is known and E(X) must be determined. Subsiituting (8) and (11) into relations 

(9) and eliminating ut+ and pt ‘, we obtain 

W 52 El 4.3 

&i. 
t =(lu:!-u,-~a 

k = CX + E(X), 11, (0) == 0, 11) (1) = 0 (12) 

Here the constant C is given by Formula (8). All of the quantities in (12) except k de- 

pend only on y. The quantity k depends only on x. Hence, k = const. The existence of two 

boundary conditions for ti makes it possible to determine r,!~(y) and k. Solution (12) can be 
written as 

yr,v 
$==y\zod”. 

0 

Using (9) and (13), we can find all o mf the pseudodeveloped flow parametera, 

duo 
- pov1+ dy ;--6--k+tl-$$} 

(13) 

1 d 
pou1+ -t yv dy (Y’$ + Poh+Y”“) 9 pl+ = 4s + k - Cz (14) 

In accordance with (4). the transverse velocity rut’ is given by Formula 

For an incompressible fluid for f = const we find from (13) and (14) (pu 3 1, a = - 1, 
z- a0 --, C = - f.Y& xl+ E 0) that 

’ = --z (16) UO 

The characteristics of pseudodeveloped~flows have been determined (for the sim lest 
cases) in the field of magnetohydrodynamics. Thus, assuming that uo I 1, Sherelfff P 21 
found the asymptotic velocity profile for the flow of an isotropically conducting fluid in a 
magnetohydrodynamic flowmeter. The correspondin 

5 

result can be obtained from (16) by sub- 
stituting in u = 0, &, = 0, uo s 1, and determining 1 from the solution of the problem of 
electric field distribution in a channel with nonconductive walls [2 and 31. The results ob- 
tained above are extended for the case of an anisotropically conducting fluid and an inhomo- 
geneons unperturbed flow in [ 41. 

The author is grateful to C.M. Bam-Zelikovich and A.N. Kraiko for their comments on the 
results of the present stndy. 
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