DETERMINING THE PARAMETERS OF SUBSONIC FLOW IN A CHANNEL BEYOND THE ZONE OF AXIAL INHOMOGENEITY OF DEAK disturbing forces and heat sources

PMM Vol. 31, No. 3, 1967, pp. 560-563

A.B. Yatazhin
(Moscow)

(Recelwed February 2, 1967)
In gaa dynamica one is frequently obliged to conaider flows of a medium in a channel in a field of distarbing forces F and heat sources Q. In those cases where the disturbing factors are relatively emall, the equations can be linearized near the solution for $F=0, Q=0$. In many practical applicatione F and Q are inhomogeneous in the longitudinal and tranaverse directione over some segment of finite length(*) (which we ahall denote by L), while upstream from this segment $F=0, Q=0$ and downstream from it F and Q depend practically only on the coordinates in the transverse cross section (or are equal to zero in a particnlar case).

We ahall ahow that in the linear formulation for subsonic flows in a flat channel and circular pipe it is possible to find the flow parameters beyond the zone L (in the segment L^{\prime}

Fig. 1 separated from L by some distance l, Fig. 1) without solving the corresponding linear system of partial differential equations. The flow in the segment L ' is determined by F and Q in L^{\prime} (which depend only on the transverse coordinates) and by the integrale of these quantities over the segment L.

In dimenmionless variables the equationa of gas dynamics for a perfect gas with conatant heat capacities are

$$
\begin{array}{ll}
\rho(\mathbf{v} \nabla) \mathbf{v}=-\nabla p+N \mathbf{f}, & \operatorname{div} \rho \mathbf{v}=0 \\
\rho \mathbf{v} \nabla \varepsilon=-p \operatorname{div} \mathbf{v}+N q, & p=(\gamma-1) \rho \varepsilon \tag{1}
\end{array}
$$

Here the density ρ, velocity \mathbf{y}, pressure p, intemal energy ε, and Cartesian coordinates $x_{y} y_{0} x$ are referred to $\rho_{*}, V, \rho_{*} V^{2}, V^{2}$, and h, respectively ρ_{*} is the characteristic density \checkmark the average velocity over the channel cross section, and h the characteristic transverse dimension); γ is the ratio of specific heats; $N f$ and $N q$ are the dimensionless densities of forces and heat sources; N is a parameter characterizing the relative magnitude of the disturbing factors.

Henceforth we assume that f and q depend explicitly on the flow parameters (but not on their derivatives) and on the coordinates.

If $N \ll 1$, the solution of (1) can be sought in the form of series,

$$
\begin{array}{ll}
\rho=\rho_{0}+N \rho_{1}+\ldots, & \varepsilon=\varepsilon_{0}+N \varepsilon_{1}+\ldots \\
p=p_{0}+N \rho_{1}+\ldots, & \mathbf{v}=\mathbf{v}_{0}+N \mathbf{v}_{1}+\ldots \tag{2}
\end{array}
$$

whore the quantities with the subscript 0 satisfy systom (1) for $N=0$. For flow in a channel with a constant cross section (along the axial coordinate x) and gas-impermeable walls we have

[^0]\[

$$
\begin{equation*}
\mathbf{v}_{0}=\left(u_{0}(y, z), 0,0\right), \quad \rho_{0}=\rho_{0}(y, z), \quad p_{0}=p_{00}=\text { const } \tag{3}
\end{equation*}
$$

\]

Here u_{0} and ρ_{0} are arbitrary mooth nonvanishing functions ${ }^{(4)}$.
The equatione of the firat approximation for a flat chennel $|x|<\infty, 0<y<1$ and circular pipe $y<1,0<\theta<2 \pi,|x|<\infty$ are of the form (**)

$$
\begin{gather*}
\rho_{0} u_{0} \frac{\partial u_{1}}{\partial x}+\rho_{0} v_{1} \frac{d u_{0}}{d y}+\frac{\partial \rho_{1}}{\partial x}=f_{x}, \quad \rho_{0} u_{0} \frac{\partial v_{1}}{\partial x}+\frac{\partial \rho_{1}}{\partial y}=f_{y} \\
u_{0} \frac{\partial \rho_{1}}{\partial x}+\rho_{0} \frac{\partial u_{1}}{\partial x}+v_{1} \frac{d \rho_{0}}{d y}+\frac{\rho_{0}}{y^{*}} \frac{\partial}{\partial y}\left(y^{\nu} v_{1}\right)=0 \\
u_{0} \frac{\partial p_{1}}{\partial x}-a_{0}{ }^{2} u_{0} \frac{\partial \rho_{1}}{\partial x}-a_{0}^{2} v_{1} \frac{d \rho_{0}}{d y}=q^{\circ} \quad\left(q^{\circ}=(\gamma-1) q\right), \quad \rho_{0} u_{0} \frac{\partial w_{1}}{\partial x}=f_{z} \tag{4}
\end{gather*}
$$

In System (4) the quantities u_{1}, v_{1}, and w_{1} are the projections of the perturbed velocity vector on the axes x, y, and s (or θ). respectively; $\nu=0$ for a flat channel and $\nu=1$ for a circular pipe; the functions ρ_{0} and u_{0} depend only on $y ; a_{0}$ is the speed of sound computed from parameters (3). The disturbing factors f and q depend on the coordinates x, y and on gas dynamic parameters (3); they are assumed to be known(***). The last Eq. in (4) does not depend on the other equations and determines the twist of the stream.

We assume that f and q are inhomogeneous with respect to x and y in the segment L; to the left of L (for $x \rightarrow-\infty) F=0, q=0$, while to the right of it f and q depend only on y. Mathematically this assumption can be expressed by requiring convergence of the integrals

$$
\int_{-\infty}^{0} \eta d x, b(y)=\int_{0}^{\infty}\left(\eta-\eta_{\infty}\right) d x
$$

and fulfillment of the approximate Eq.

$$
\int_{0}^{x}\left(\eta-\eta_{\infty}\right) d x=b
$$

for x lying to the right of L. (Here $\eta(x, y)$ is either of the functions $f, q ; \eta_{\infty}=\eta(\infty, y)$; the cross section $x=0$ belongs to the zone L).

Let us consider the boundary conditions for syatem (4). We shall examine subsonic flows (3). These will be unperturbed (by the factors f and q) if the conditions at the channel exit upon "actuation" of the disturbing factors are adjusted in such a way that the conditions at the entrance are not altered. In the general cane by u_{0}, p_{0}, and p_{00} we meen certain diatributions of the gas dynamic parameters in the entrance crosis section which come into being upon the actuation of the dinturbances f and q.

In these cases the perturbations of v_{1}, ρ_{1}, and p_{1} are equal to zero as $x \rightarrow-\infty$. At the impermeable walls of the channel (for $y=1$) we have $v_{1}=0$.

Let us analyze system (4). Integrating the first, third, and fourth of its Eqs. over x in the range $(-\infty, x)$, we obtain three relations which enable us to express u_{1}, p_{1}, and ρ_{1} in terms of the integrals of v_{1} and $\partial v_{1} / \partial y$. Then, differentiating the first and second Eqs. of system (4) over y and x, respootivoly, and taking acoount of the resulting expression for u_{1}, wo obtain one partial differential equation for the velocity v_{1},

$$
\begin{gather*}
\rho_{0} u_{0}\left(\alpha \frac{\partial^{2} v_{1}}{\partial y^{2}}-\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)+\frac{\partial v_{1}}{\partial y} \frac{u_{0}}{y^{v}} \frac{d}{d y}\left(\alpha \rho_{0} y^{v}\right)-v_{1} \frac{d}{d y}\left[\alpha \rho_{0} y^{v} \frac{d}{d y}\left(\frac{u_{0}}{y^{v}}\right)\right]=\Phi \\
\alpha=\left(M_{0}^{2}-1\right)^{-1}, \quad \Phi=\frac{\partial f_{x}}{\partial y}-\frac{\partial f_{y}}{\partial x}-\frac{\partial}{\partial y}\left(s u_{0 \rho_{0}}\right), \quad s=\frac{\alpha}{\rho_{0} a_{0}^{2}}\left(u_{0} f_{x}-q^{\circ}\right) \tag{5}\\
v_{1}=0 \quad \text { при } x>-\infty, \quad \begin{array}{ll}
v_{1}=0 \quad \text { при } y=0, y=1
\end{array}
\end{gather*}
$$

*) The presence of discontinuities in the derivatives of u_{0}, ρ_{0} would result in a discontinuons profile of the pertarbed volocity u_{1}; the presence of points where $\rho_{q} u_{0}=0$ would result in an anlimited increase in u_{1} (Formula (14)). The limitations $\rho_{\text {imposed }} u_{0}$ the functions u_{0} and ρ_{0} are dictated by the model of a nonviscous mediam which we are using.
**) In the case of a circular pipe y, θ, x are cylindrical coordinates.
***) The fact that f and q depend only on x and y allowed us to assume that $\partial / \partial z=0$ (or $\partial / \partial \theta=0$) in deriving (4).

Here M_{0} is the Mach number for unperturbed flow (3). For $M_{0}<1 \mathrm{Eq}$. (5) has an elliptic character. By hypothesis, the disturbing factors are axially homogeneous to the right of L and

$$
\begin{equation*}
\Phi=\Phi_{\infty}(y)=\frac{d l_{x \infty}}{d_{i}}-\frac{d}{d,}\left(s u_{0} \rho_{0}\right)=\frac{d S}{d y}, \quad S=-\alpha u_{\mathrm{C}}\left(\frac{t_{x \infty}}{u_{0}}-\frac{q_{\infty}^{\circ}}{a_{0}^{2}}\right) \tag{6}
\end{equation*}
$$

For an incompressible fluid we must set $\rho_{0} \equiv 1, a=-1, a_{0}=\infty$ in (5) and (6).
Due to the elliptic character of Eq. (5), the perturbations occasioned by the axial inhomageneity of Φ on L are damped out to the right of L over the length Δx of magnitude on the order of $l=\left(1-M_{*}^{2}\right)^{1 / 2}$, where M_{*} is the Mach number of unperturbed flow averaged over the cross section(*) (the dimensional damping length can be obtained by multiplying Δx by h). Hence, at a sufficient large distance Δx from the right end of $L(\Delta x \geqslant b)$ the velocity v_{1} practically ceases to depend on $x\left(v_{1}=v_{1}{ }^{+}(y)\right)$ and is given by Eq. (**)

$$
\begin{gather*}
\alpha_{\vartheta_{0} u_{1}} \frac{d v_{1}^{+}}{d y^{2}}+\frac{d v_{1}^{+}}{d y} \frac{u_{1}}{y^{\nu}} \frac{d}{d y}\left(\alpha \rho_{0} y^{\nu}\right)-v_{1}^{+} \frac{d}{d y}\left(\alpha_{\rho_{0}} y^{v} \frac{d}{d f} \frac{u_{0}}{y^{\nu}}\right)=\frac{d S}{d y} \\
v_{1}^{+}(0)=0, \quad v_{1}^{+}(1)=0 \tag{7}
\end{gather*}
$$

The solution of this Eq. is of the form

$$
\begin{equation*}
v_{1}{ }^{+}=\frac{u_{0}}{y^{v}} \int_{0}^{u}(S+C) \mu d, \quad C=-\int_{0}^{1} S \mu d / \left\lvert\, \int_{0}^{1} \mu d / \cdot \quad\left(\mu=\frac{y^{\nu}}{\alpha_{0} \mu_{0}^{2}}\right)\right. \tag{8}
\end{equation*}
$$

According to this expression, $v_{1}{ }^{+} \equiv 0$ for $S=$ const. This is possible, for example, for $f_{x_{\infty}}=0, q_{\infty}{ }^{\circ}=0$, or $f_{x}=$ const, $q_{\infty}=$ const and a homogeneous unperturbed stream. In the case of an incompressible fluid $S=f_{x_{\infty}}$ and the velocity $v_{1}{ }^{+}$can differ from zero only with an inhomogeneous distribation of $f_{x a}$.

Let us determine the remaining flow parameters to the right of the zone L, i.e, in the zone L^{\prime}, where $v_{1} \approx v^{+}{ }_{1}$. The flow in this zone will henceforth be called pseudodeveloped (**); its parameters will be accompanied by the superscript + .

Let us integrate the first, third, and fourth Eqs. of system (4) over x within the limits $(-\infty, x)$, where x belongs to the pseudodeveloped flow zone. We obtain

$$
\begin{align*}
& \rho_{0} u_{0} u_{1}{ }^{+}+F_{1}{ }^{+}+\frac{d u_{0}}{d J}\left(\psi+x \rho_{0} v_{1}{ }^{+}\right)=x f_{x \infty}+\xi_{1} \\
& u_{0} \rho_{1}++\rho_{0} u_{1}+\frac{d \psi}{d y}+\frac{v}{y} \psi+x\left[\frac{d}{d y} \rho_{0} v_{1}+1+\frac{v}{y} \rho_{0} v_{1}^{+}\right]=0 \tag{9}\\
& u_{0} F_{1}{ }^{+}-a_{0}^{2} u_{0} \rho_{1}^{+}-\frac{a_{0}^{2}}{\rho_{0}} \frac{d \rho_{0}}{d y}\left(\psi+x \rho_{0} v_{1}{ }^{+}\right)=q_{\infty}^{\circ} x+\xi_{2} \\
& \psi=\psi(y)==\int_{-\infty}^{0} \rho_{0} v_{1} d x+-\int_{0}^{\infty} \rho_{0}\left(v_{1}-v_{1}{ }^{+}\right) d x \tag{10}\\
& \xi_{1}=\xi_{1}(y)=\int_{-\infty}^{0} f_{x} d x+\int_{0}^{\infty}\left(f_{x}-f_{x \infty}\right) d x, \quad \xi_{2}=\xi_{2}(y)=\int_{-\infty}^{0} q^{\circ} d x+\int_{0}^{\infty}\left(q^{\circ}-q_{\infty}^{0}\right) d x
\end{align*}
$$

Instead of the superscript on the integrals of (10) should, strictly speaking, contain the quantity x. But since x belongs to the pseudodeveloped flow zone, where $v_{1} ; f_{x^{*}}$ and q^{0} practically coincide with $v_{1}^{+}, f_{x \infty}$ and q_{N} " (i.e. in theory they reach these asymptotic values

[^1]very quickly), replacement of the upper limits is quite permissible, and ξ_{1}, ξ_{2}, and ψ can be considered as functions of the single variable y. The quantities ξ_{1} and ξ_{2} are assumed known.

From the second Eq. of system (4) we have

$$
\begin{equation*}
p_{1}{ }^{+}=\xi_{3}(y)-\varepsilon(x) \quad\left(\xi_{3}=\int_{i 1}^{u} f_{y \infty} d y\right) \tag{11}
\end{equation*}
$$

Here ξ_{3} is known and $\varepsilon(x)$ must be determined. Substituting (8) and (11) into relations (9) and eliminating $u_{1}{ }^{+}$and $\rho_{1}{ }^{+}$, we obtain

$$
\begin{gather*}
\frac{d \psi}{d y}-\psi \frac{d}{d y} \ln \frac{u_{0} \rho_{0}}{y^{\nu}}=\mathrm{\Gamma}, \quad \mathrm{\Gamma}=t(y)-\frac{k}{\alpha u_{0}}, \quad t=\frac{\xi_{2}}{a_{0}^{2}}-\frac{\xi_{1}}{u_{0}}-\frac{\xi_{3}}{u_{0} \alpha} \\
k=C x+\varepsilon(x), \quad \psi(0)=0, \quad \psi(1)=0 \tag{12}
\end{gather*}
$$

Here the constant C is given by Formula (8). All of the quantities in (12) except k depend only on y. The quantity k depends only on x. Hence, $k=$ const. The existence of two boundary conditions for ψ makes it possible to determine $\psi(y)$ and k. Solution (12) can be written as

$$
\begin{equation*}
\psi=\frac{u_{0} \rho_{0}}{y^{\nu}} \int_{0}^{y} \frac{\Gamma y^{\nu}}{\rho_{0} u_{0}} d y, \quad k=\left.\int_{0}^{1} \frac{t y^{\nu} d y}{\rho_{0} u_{0}}\right|_{0} ^{1} \int_{0}^{\bullet} \frac{y^{\nu} d y}{\alpha \rho_{0} u_{0}^{2}} \tag{13}
\end{equation*}
$$

Using (9) and (13), we can find all of the psendodeveloped flow parameters,

$$
\begin{gather*}
u_{1}^{+}=\frac{1}{\rho_{0} u_{0}}\left\{x\left(f_{x 0_{0}}+C-\rho_{0} v_{1}^{+} \frac{d u_{0}}{d y}\right)-\xi_{3}-k+\xi_{1}-\psi \frac{d u_{0}}{d y}\right\} \\
\rho_{1}^{+}=-\frac{1}{u_{0}}\left\{\rho_{0} u_{1}^{+}+\frac{1}{y^{\nu}} \frac{d}{d y}\left(y^{v} \psi+\rho_{0} v_{1}^{+} y^{\vee} x\right)\right\}, \quad p_{1}^{+}=\xi_{3}+k-C x \tag{14}
\end{gather*}
$$

In accordance with (4), the transverse velocity $w_{1}{ }^{+}$is given by Formula

$$
\begin{equation*}
w_{1}^{+}==\frac{1}{\rho_{0} u_{0}} \xi_{4}+x \frac{f_{z \infty}}{\rho_{0} u_{0}} \quad\left(\xi_{4}=\int_{-\infty}^{0} f_{z} d x+\int_{0}^{\infty}\left(f_{z}-f_{z \infty}\right) d x\right) \tag{15}
\end{equation*}
$$

For an incompressible fluid for $f=$ const we find from (13) and (14) ($\rho_{0} \equiv 1, \alpha=-1$, $\left.a_{0}^{2}=\infty, C=-f_{x \infty 0}, r_{1}{ }^{+} \equiv 0\right)$ that

$$
\begin{gather*}
u_{1}^{+}=\frac{1}{u_{0}}\left(\xi_{1}-k-\psi \frac{d u_{0}}{d y}-y f_{y \infty \infty}\right), \quad F_{1}^{+}=f_{x \infty} x+f_{v \times x} y+k \\
\psi=\frac{u_{v}}{y^{\nu}} \int_{0}^{y} \Gamma \frac{y^{\nu} d y}{u_{0}}, \left.\quad k=-\int_{0}^{1} \frac{t y^{\nu} d y}{u_{0}} \right\rvert\, \int_{0}^{1} \frac{y^{\nu} d y}{u_{0}^{2}}, \quad \Gamma=t+\frac{k}{u_{0}}, \quad t=\frac{y f_{y \infty}}{u_{0}}-\frac{\xi_{1}}{u_{0}} \tag{16}
\end{gather*}
$$

The characteristics of pseudodeveloped flows have been determined (for the simplest cases) in the field of magnetohydrodynamics. Thus, assuming that $u_{0} \equiv 1$, Shercliff [2] found the asymptotic velocity profile for the flow of an isotropically conducting fluid in a magnetohydrodynamic flowmeter. The corresponding result can be obtained from (16) by substituting in $\nu=0, \mathcal{f}_{\infty}=0, u_{0} \equiv 1$, and determining ξ_{1} from the solution of the problem of electric field distribution in a channel with nonconductive walls [2 and 3]. The resalts obtained above are extended for the case of an anisotropically conducting fluid and an inhomogeneous unperturbed flow in [4].

The anthor is grateful to G.M. Bam-Zelikovich and A.N. Kraiko for their comments on the results of the present study.

BIBLIOGRAPHY

1. Shercliff, J., Theory of Electromagnetic Flow Measurement. Izd. "Mir", 1965.
2. Shercliff, F.A., Edge effects in electromagnetic flowneters. J. Nucl. Energy Vol. 3, No. 305. 1956.
3. Vatachin, A.B. and Regirer, S.A., Electric Fields in Magnetohydrodynamic Instrument Channels. Sepplement to the Rusaian edition of Shercliff's Theory of Electromagnetic Flow Measurement, Izd. "Mir", 1965.
4. Vatazhin, A.B., Deformation of the velocity profile in an inhomogeneous magnetic field. PMM Vol. 31, No. 1, 1967.

[^0]: *) In magnetohydrodynamics \mathbf{F} and Q are the electromagnetic force and the Joule dissipation, respectively. In many practically interesting cases the length of the zone L is comparable to the height of the channel.

[^1]: *) A very rough and in most cases exaggerated estimate is used. An exact estimate can, of course, be obtained after solving Eq. (5), We also note that numbers M * close to unity are excluded from consideration. $A_{s} M_{*} \rightarrow 1$ the perturbation of the velocity u_{1} increases without limit and the linear theory no longer applies.
 **) Theoretically $v_{1} \rightarrow v_{1}{ }^{+}(y)$ as $x \rightarrow \infty$. However, the asymptotic form is determined by the exponential factor, and transition to the profile $v_{1}{ }^{+}(y)$ occurs at a finite distance from L equal to l in order of magnitude.
 **) This tem is used in monograph [1] to describe the flow of a nonviscous incompressible fluid in a flat channel beyond the inhomogeneous magnetic field zone.

