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In gas dynamics one is frequently obliged to conaider flows of a medium in a channel in a
field of disturbing forces lguand heat sources Q. In those cases where the disturbing factors
are relatively small, the equations can be linearized near the solution for F= 0, Q= 0. In
many practical applications F and Q are inhomogeneous in the longitudinal snd transverse
directions over some segment of finite length(*) (which we shall denote by L), while up-
stream from this segment F = 0, Q = 0 and downstream from it F and Q depend practically
only )on the coordinates in the transverse cross section (or are equal to zero in a particalar
case).

We shall show that in the linear formulation for subsonic flows in a flat channel and cir-
cular pipe it is possible to find the flow parameters beyond the zone L (in the segment L’
separated from L by some distance I, Fig. 1) without solving
the corresponding linear system of partial differential equa-
tions, The flow in the segment L “is determined by F and Q
in L’ (which depend only on the transverse coordinates) and
by the integrals of these quantities over the segment L.

In dimensionless variables the equations of gas dynamics
for a perfect gas with constant heat capacities are

p(VV)v = —Vp + M, divpy =0
pvVe = — pdivv{ Ng, p= (Y—1)pe (1

Here the density p, velocity V, pressure p, internal energy €, and Cartesian coordinates
%, ¥, & are referred to p,,V, peV% V¢, and h, respecﬁvely%. is the characteristic density
V the average velocity over the channel cross section, and A the characteristic transverse
dimension); y is the ratio of specific heats; Nf and Ng are the dimensionless densities of
forces and heat sources; N is a parameter characterizing the relative magnitude of the dis-
turbing factors.

Henceforth we assume that f and ¢ depend explicitly on the flow parameters (but not on
their derivatives) and on the coordinates.

If N < 1, the solution of (1) can be sought in the form of series,

= po+ Npy =+ ..., & =¢g;+ Ney+....

Pp=po+Np+..., Vv=vo+ Nvi+ ... (2)
where the quantities with the subacript 0 satisfy system (1) for N = 0. For flow in a channel
with a constant cross section (along the axial coordinate x) and gas-impermeable walls we
have

*) In magnetohydrodynamics F and @ are the electromagnetic force and the Joule dissipa-
tion, respectively. In many practically interesting cases the length of the zone L is com-
parable to the height of the channel.
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Vo = (up (yc. 1), 0, 0), Po = Po (s 2 Py = poy = const (3)
Here u,, and p,, are arbitrary smooth nonvanishing functions(*),
The equations of the first approximation for a flat channel |x| <o, 0 <y <1 and circular
pipe y <1, 0< 0 < 2m, |x| <oo are of the form(**)

duy duy on dvy op
poto G TR0y T gy =fx  mUe Gy T 5 =1y
apl 6u1 dpo Po 6
UGy +PoGy TG, + 'yTa—y(y"vx) =0
a 0 d 0w,
g — WGy —atngr =g @=0—00 wweg=f W

In System (4) the quantities u, , v,, and w, are the projections of the perturbed velocity
vector on the axes x, y, and z (or §). respectively; v = 0 for a flat channel andv = 1 fora
circular pipe; the functions p, and u, depend only on y; a, is the speed of sound computed
from parameters (3). The disturbing factors [ and ¢ depend on the coordinates x, y and on
gas dynamic parameters (3); they are assumed to be known(***). The last Eq. in (4) does
not depend on the other equations and determines the twist of the stream.

We assume that f and g are inhomogeneous with respect to x and y in the segment L; to
the left of L (for x + —o0) F = 0, ¢ = 0, while to the right of it f and g depend only on y.
Mathematically this assomption can be expressed by requiring convergence of the integrals

0 o0

{ naz s ={n—noa
—00 0
and fulfillment of the approximate Eq.

x

{o—n) e =t

0
for x lying to the right of L. (Here 7(x, y) is either of the functions {, ¢; 7)oo = 77(00, y); the
cross section x = 0 belongs to the zone L).

Let us consider the boundary conditions for system (4). We shall examine subsonic flows
(3). These will be unperturbed (by the factors f and ¢) if the conditions at the channel exit
upon ‘“‘actuation’’ of the disturbing factors are adjusted in such a way that the conditions at
the entrance are not altered. In the general case by uy, p,, and pgo, we mem certain distri-
butions of the gas dynamic parameters in the entrance cross section which come into being
upon the actuation of the disturbances f and q.

In these cases the perturbations of vy, p,, and p , are equal to zero as x + — oo, At the
impermeable walls of the channel (fory = 1) we have vy = 0.

Let us analyze system (4). Integrating the first, third, and fourth of its Eqs. over x in the
range (— oo, x), we obtain three relations which enable us to express u;, p,, and p; in terms
of the integrals of v; and dv,/dy. Then, differentiating the first and second Eqgs. of system
(4) over y and x, respectively, and taking account of the resulting expression for u,, we ob-
tain one partial differential equation for the velocity vy,

Py aﬂv1> dvy uy d v d v d (ﬂ)] -
poUo | @ o 2zt + '@ 7 —t_i_y— (2pgy’) — 01 dy apoy dy v =
of, of F a
- v e —— o (5
a=(M— 1), D= 55—t — o (sup), = g (e 4% )
»1=0 0Opaz— — oo, vp=0 npr y=0 y=1

*) The presence of discontinuities in the derivatives of ug, p, would result in a discon-
tinuous profile of the perturbed velocity u,; the presence of points where Pquo =0
would result in an unlimited increase in u; (Formula (14)). The limitations imposed on
the functions u, and p,, are dictated by the model of a nonviscous medium which we
are using.

*#) In the case of a circular pipe y, 8, x are cylindrical coordinates.
##%) The fact that f and ¢ depend only on x and y allowed us to assume that 3/3z = 0 (or
3/36 = 0) in deriving (4).
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Here M, is the Mach number for unperturbed flow (3). For My < 1 Eq. (5) has an elliptic
character. By hypothesis, the disturbing factors are axially homogenheous to the right of L

and

Ao d ds fro oo ©)
D = O () =g — g (Sopo) == dy » S:*““c(“&‘r—
For an incompressible fluid we must set py =1, a= — 1, 6y = in (5) and (6).

Due to the elliptic character of Eq. \5), the perturbations occasioned by the axial inhomo-
geneity of @ on L are damped out to the right of L over the length Ax of magnitude on the
order of I = (1 — M42 )%, where M+ is the Mach number of unperturbed flow averaged over
the cross section(*) (the dimensional damping length can be obtained by multiplying Ax by
). Hence, at a sufficient large distance Ax from the right end of L (Ax = [) the velocity
v, practically ceases to depend on z{v, = v,* (y)) and is given by Eq. (**)

dot  dntw d g, mY ds

Qpoten e+ gy g dg (pey) — ntdy \ @y dy Y | Tt ay
l’1+ (0) B O’ »T (1) = (7)

The solution of this Eq. is of the form
¥ 1 1 v
! - : y
ut =2\ Ouds, Cm—ssud\//yd/' (”‘W) ®
AT 0 0

According to this expression, ul*s 0 for S = const. This is possible, for example, for
fro=0, q5.°=U, or fy. = comnst, ¢°, = const and a homogeneocus unperturbed stream. Iz
the case of an incompressible fluid S = fx,, and the velocity ”1+ can differ from zero only
with an inhomogeneous distribution of £ .

Let us detemine the remaining flow parameters to the right of the zone L, i.e. in the
zone L, where v; =~ »*;. The flow in this zone will henceforth be called psendodeveloped
(***); its parameters will be accompanied by the superscript +.

Let us integrate the first, third, and fourth Egs. of system (4} over x within the limits
(o0, x), where x belongs to the pseudodeveloped flow zone. We obtain

d
poror® + 1" + 'a%g('p + zport*) = xf o+ &1

d d
uoprt 4 pour* 4;-% + _;“\P += [E‘!‘ pe¥1’ o+ % ?01’1+] = @
2 d
uoprt — aolueprt — a_:; EP_; (P +zpon®) = q.° 2 - Ea
0 (o]
Y=1P(y) = 5 pov1dZ - S po(v1—uit)dx (0
—oo 0
a2 % g <
Er=81(y) = S frde S (fo—Fion) 4%, B2 =Ea(y) == S ¢ dx + S (4°— 95 ) d
—ca ] —on o

Instead of the superscript oo the integrala of (10) should, strictly speaking, contain the
guantity x. But since x belongs to the pseudodeveloped flow zone, where v;, f,, and ¢°
practically coincide with #;*,f,_ and ¢ ° (i.e. in theory they reach these asymptotic values

*) A very rough and in most cases exaggerated estimate is used. An exact estimate can,
of course, be obtained after solving Eq. (5), We also note that numbers Mq close to un-
ity are excluded from consideration. As My + 1 the perturbation of the velocity uq in-
creases without limit and the linear theory no longer applies.

**) Theoretically z; — 2,* (y) as x » oo, However, the asymptotic form is determined by the
exponential factor, and transition to the profile v, 7 (y) occurs at a finite distance from
L equal to I in order of magnitude,
*%%) This term is used in monograph [1] to describe the flow of a nonviscous incompressi-
ble fluid in a flat channel beyond the inhomogeneous magnetic field zone.
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very quickly), replacement of the upper limits is quite pemissible, and &;, fz, and ¢ can
be considered as functions of the single variable y. The quaniities £, and £, are assumed
known.
From the second Eq. of system (4) we have
u

pr=gw) e (G (fa) an

o
Here tfs is known and £{x) must be determined. Substituting (8) and (11) into relations
(9) and eliminating u; * and p1+, we obtain

dp A wee k. B b _ &
E'—wﬁln y =T 1:t<y)_°‘“0' tr:doz U UoQ
k=Czrt+e(x), $=0P{1)=0 (12)

Here the constant C is given by Formula (8). All of the quantities in (12) except k de-
pend only on y. The quantity & depends only on x. Hence, k = const. The existence of two
boundary conditions for i makes it possible to determine { (y) and k. Solution (12) can be

written as .

1{ v . v . v
o a0 Iy dy. o\ dy 5 y d;/ 13)
Yy’ Jfoko polto opoléo

0

Using (9) and (13), we can find all of the psendodeveloped flow parameters,

+ 1 , +du0 duo
uy = hotis z(fxooTC*Povl ay —53—’17-}-51—117@

.-

0

1 1 d
prf = — - {90“1+ + Wy W' + Pov1+yvz)} , =8 +k—-Cx (14)
In accordance with (4), the transverse velocity w1+ is given by Formula
0 )
o, ' \ ) (15)
wt = PolUo Bt poUo <E4 - S fz as +5 (f‘ ~ Jza0) dl/)
—00 [}]

For an incompressible fluid for f = const we find from (13) and (14) (pg=1,a= -1,
a2 =00, C = — f ., ryt = 0) that

1 duo .,
wt = (B k= O G~ Uyo) s P = e A ey
Y 1 1
u, ¢ yvdy ‘ty"dy wyvdy S L t_yfym _él_
‘lIJ:?SI‘ up °’ k:“,\, Uo S up? ’ =t+ uy ' ~ ue  uo (16)
70 0 [

The characteristics of pseudodeveloped flows have been determined (for the simplest
cases) in the field of magnetohydrodynamics. Thus, assuming that ug = 1, SherclifffZ]
found the asymptotic velocity profile for the flow of an isotropically conducting fluid in a
magnetohydrodynamic flowmeter. The corresponding result can be obtained from (16) by sub-
stituting in v = 0, £, = 0, uy = 1, and determining & from the solution of the problem of
electric field distribution in a channel with nonconductive walls (2 and 3]. The results ob-
tained above are extended for the case of an anisotropically conducting fluid and an inhomo-
geneous unperturbed flow in [4]

The author is grateful to G.M. Bam-Zelikovich and A.N. Kraiko for their comments on the
results of the present study.
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